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Abstract
The Hamiltonian formalism of the derivative nonlinear Schrödinger equation
with a nonvanishing boundary value is developed by the standard procedure.
The action-angle variables are given explicitly. At the end of this work, a
Galileo transformation is introduced to ensure that the conservative quantities
obtained satisfy the Hamiltonian equation.

PACS numbers: 05.45.Yv, 42.65.Tg, 47.65.+a

1. Introduction

From the general view point, the complete integrability of a nonlinear equation means that it
describes a multi-periodic system, that is, a Hamiltonian system with action-angle variables
as canonical conjugate variables [1]. In the case of a complex field equation, such as the
nonlinear Schrödinger (NLS) equation, one can introduce field density and its canonical
conjugate momentum density in usual sense. For a real equation, such as the KdV equation,
to formulate the Hamiltonian formalism, an alternative form of Poisson bracket for real field
densities at two points has been introduced [2, 3]. Furthermore, the time dependence of angle
variables derived from its Poisson bracket with action variables must be the same as that
derived from the inverse scattering transform, which has not been paid much attention to.

The derivative nonlinear Schrödinger (DNLS) equation was proposed to describe
nonlinear Alfvén waves in plasma [4, 5]. In the case of a vanishing boundary, it was solved
by the inverse scattering transform (IST) [6], or other approaches [7–9], and its complete
integrability was shown by Kundu in [10] through the r–s matrix formalism. In the other
case of a nonvanishing boundary, the DNLS equation was discussed by some authors in terms
of the usual spectral parameter [11, 12]. The multi-value problem of square root appears,
and then the Riemann surface has to be introduced, which leads to complexity and ambiguity
in the derivation. As a result, the affin parameter is introduced to clarify the multi-value
problem [13, 14, 17], based upon which the Hamiltonian formalism of the DNLS equation
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with a nonvanishing boundary condition can be formulated naturally. We perform it in this
work, and the effect of the linear coordinate transformation on the Hamiltonian theory is
shown.

2. Poisson bracket

The DNLS equation with a nonvanishing boundary condition (DNLS+ equation) is generally
expressed as [4, 5]

iut − uxx + i(|u|2u)x = 0, (1)

where u is complex and |u| → ρ in the limit of x → ±∞. Now, a particular form of the
Poisson bracket is proposed:

{u(x), u(y)} = 1
2 {∂x − ∂y}δ(x − y). (2)

For two quantities Q,R, the Poisson bracket is

{Q,R} =
∫ ∫

dx dy

(
δQ

δu(x)

δR

δu(y)
{u(x), u(y)} +

δQ

δu(x)

δR

δu(y)
{u(x), u(y)}

)
. (3)

Integrating by part, equation (3) becomes

{Q,R} = −1

2

∫ ∫
dx dy

({
∂x

δQ

δu(x)

}
δR

δu(y)
− δQ

δu(x)

{
∂x

δR

δu(y)

}

+

{
∂x

δQ

δu(x)

}
δR

δu(y)
− δQ

δu(x)

{
∂x

δR

δu(y)

})
δ(x − y). (4)

Thus, the Hamiltonian equation is obtained as

ut (x) = {H,u(x)}, H =
∫

dx H(x), H(x) = 1

2
|u|4 − iuxū. (5)

3. Lax pair

The first of the Lax equations is

∂xF (x, t, λ) = L(x, t, λ)F (x, t, λ), (6)

where λ is a spectral parameter. L is a 2 × 2 matrix

L = −iλ2σ3 + λU, U = uσ+ + ūσ−, (7)

where

σ+ =
(

0 1
0 0

)
, σ− =

(
0 0
1 0

)
, (8)

and ζ is an auxiliary parameter such that

λ = 1
2 (ζ + ρ2ζ−1), κ = 1

2 (ζ − ρ2ζ−1). (9)

As the asymptotic free Jost solution is E(x, ζ ) = (I + ρζσ2) e−iλκxσ3 , we define the Jost
solutions

�(x, ζ ) = (ψ̃(x, ζ ), ψ(x, ζ )) → E(x, ζ ), as x → ∞,


(x, ζ ) = (φ(x, ζ ), φ̃(x, ζ )) → Q−1(α)E(x, ζ ), as x → −∞,
(10)
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where Q(α) = ei 1
2 ασ3 . Then the monodramy matrix T (λ) is given by

T (ζ ) = �−1(x, ζ )
(x, ζ ), T (ζ ) =
(

a(ζ ) b̃(ζ )

b(ζ ) ã(ζ )

)
. (11)

From (10), a(ζ ) can be analytically continued into the first and the third quadrants and ã(ζ )

into the second and the fourth quadrants. The continuous spectrum is composed of real ζ 2,
that is, composed of real ζ and imaginary ζ .

Similar to the NLS+ equation, there are several reduction transformation properties:

ψ̃(x, ζ̄ ) = σ1ψ(x, ζ ), φ̃(x, ζ̄ ) = σ1φ(x, ζ ), (12)

ã(ζ̄ ) = a(ζ ), b̃(ζ̄ ) = b(ζ ), (13)

and, under the transformation ζ → ρζ−1,

ψ̃(x, ρ2ζ−1) = iρ−1ζψ(x, ζ ), φ̃(x, ρ2ζ−1) = −iρ−1ζφ(x, ζ ), (14)

ã(ρ2ζ−1) = a(ζ ), b̃(ρ2ζ−1) = −b(ζ ). (15)

in which the second ones of (13) and (15) require λκ as real.
And there are some reduction properties of only the DNLS+ equation; for example, since

L(−ζ ) = σ3L(ζ )σ3, (16)

we have

T (−ζ ) = σ3T (ζ )σ3, (17)

that is,

a(−ζ ) = a(ζ ), b(−ζ ) = −b(ζ ). (18)

Since a(λ) is assumed to have N simple poles in the first and third quadrants, a(λ) can be
expressed as [1]

a(λ) =
N∏

n=1

ζ − ζn

ζ − ζ̄n

ζ̄n

ζn

exp

{
ζ

i2π

∫
�

ln|a(ζ ′)|2
(ζ ′ − ζ )ζ ′

}
, (19)

where the integral contour � = (0, +∞)
⋃

(0,−∞)
⋃

(+i∞, 0)
⋃

(−i∞, 0) along the real
and imaginary axes.

4. Poisson bracket for the monodramy matrix

Since ∂x det �(x, ζ ) = 0 and ∂x det 
(x, ζ ) = 0, we have

det �(x, ζ ) = det 
(x, ζ ) = det E(x, ζ ) = 1 − ρ2ζ−2, (20)

and thus,

det T (ζ ) = 1, a(ζ )ã(ζ ) − b(ζ )b̃(ζ ) = 1, (21)

T −1(ζ ) =
(

ã(ζ ) −b̃(ζ )

−b(ζ ) a(ζ )

)
(22)

and so on.
Introducing the usual direct product ⊗, the Poisson bracket of the monodramy matrix is

defined as

{T (ζ ) ⊗, T −1(ζ ′)}ij,kl = {T (ζ )ij , T
−1(ζ ′)kl}. (23)
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Substituting equations (11)–(15), the explicit expression of equation (23) is

{T (ζ ) ⊗, T −1(ζ ′)} = −1

2

∫
dx �−1(x, ζ )
−1(x, ζ ′)R
(x, ζ )�(x, ζ ′), (24)

where

R = −(i2λ3σ+ − λ2ūσ3) ⊗ (λ′σ−) − (λσ+) ⊗ (i2λ′3σ− + λ′2uσ3)

+ (i2λ3σ− + λ2uσ3) ⊗ (λ′σ+) + (λσ−) ⊗ (i2λ′3σ+ − λ′2ūσ3). (25)

Equation (25) is expressed in a matrix with row {i ′l′} and column {j ′m′},

−




0 −λ2λ′u λλ′2u 0
−λ2λ′ū 0 i2λ3λ′ + i2λλ′3 −λλ′2u
λλ′2ū −i2λ3λ′ − i2λλ′3 0 λ2λ′u

0 −λλ′2ū λ2λ′ū 0


 . (26)

5. Another direct product for Poisson bracket

In the usual method to formulate the Hamiltonian theory, one considers [1]

∂x({�−1(ζ )�(ζ ′)} ⊗′ {
−1(ζ ′)
(ζ )}), (27)

where another direct product ⊗′ is introduced,

AimBlj = (A ⊗′ B)il,jm. (28)

From the first Lax equation, equation (27) becomes

�−1(ζ ){L(ζ ′) − L(ζ )}�(ζ ′) ⊗′ 
−1(ζ ′)
(ζ )

+ �−1(ζ )�(ζ ′) ⊗′ 
−1(ζ ′){L(ζ ) − L(ζ ′)}
(ζ), (29)

that is,

�−1(x, ζ )
−1(x, ζ ′)W0
(x, ζ )�(x, ζ ′), (30)

where

W0 = i(λ2 − λ′2){σ3 ⊗′ I − I ⊗′ σ3} − (λ − λ′)u{σ+ ⊗′ I − I ⊗′ σ+}
− (λ − λ′)ū{σ− ⊗′ I − I ⊗′ σ−}. (31)

Equation (31) may be written in the matrix form explicitly as


0 −(λ − λ′)u (λ − λ′)u 0
(λ − λ′)ū 0 i2(λ2 − λ′2) −(λ − λ′)u

−(λ − λ′)ū −i2(λ2 − λ′2) 0 (λ − λ′)u
0 (λ − λ′)ū −(λ − λ′)ū 0


 . (32)

It is obvious that equation (32) is not proportional to equation (26), which means that another
expression is necessary to construct the Hamiltonian formalism.

Considering

∂x({�−1(ζ )σ3�(ζ ′)} ⊗′ {
−1(ζ ′)σ3
(ζ)}), (33)

it is equal to

�−1(ζ ){σ3L(ζ ′) − L(ζ )σ3}�(ζ ′) ⊗′ 
−1(ζ ′)σ3
(ζ)

+ �−1(ζ )σ3�(ζ ′) ⊗′ 
−1(ζ ′){σ3L(ζ ) − L(ζ ′)σ3}
(ζ) (34)
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also from the first Lax equation. Similar to (30), (34) may be written in the form

�−1(x, ζ )
−1(x, ζ ′)W3
(x, ζ )�(x, ζ ′), (35)

where

W3 = i(λ2 − λ′2){I ⊗′ σ3 − σ3 ⊗′ I } + (λ + λ′)u{σ+ ⊗′ σ3 + σ3 ⊗′ σ+} (36)

− (λ + λ′)ū{σ− ⊗′ σ3 + σ3 ⊗′ σ−},
explicitly




0 (λ + λ′)u (λ + λ′)u 0
−(λ + λ′)ū 0 −i2(λ2 − λ′2) −(λ + λ′)u
−(λ + λ′)ū i2(λ2 − λ′2) 0 −(λ + λ′)u

0 (λ + λ′)ū (λ + λ′)ū 0.


 . (37)

Defining

�α ≡ lim
L→∞

�−1(x, ζ )σα�(x, ζ ′) ⊗′ 
−1(x, ζ ′)σα
(x, ζ )|x=L
x=−L, (38)

there should be

{T (ζ ) ⊗, T −1(ζ ′)} = f0�0 + f3�3, (39)

where two constant coefficients f0 and f3 are introduced, that is, f0(32) + f3(37) = (26). A
comparison between the corresponding elements of matrices in two sides yields

−(λ − λ′)f0 + (λ + λ′)f3 = λ2λ′, (λ − λ′)f0 + (λ + λ′)f3 = −λλ′2. (40)

It is found that

f0 = −1

2
λλ′ λ + λ′

λ − λ′ , f3 = 1

2
λλ′ λ − λ′

λ + λ′ . (41)

6. Explicit expression of Poisson bracket of the monodramy matrix

From (39)–(41), the Poisson bracket {T (λ) ⊗, T −1(λ′)}, i.e.



{a, ã′} −{a, b̃′} {b̃, ã′} −{b̃, b̃′}
−{a, b′} {a, a′} −{b̃, b′} {b̃, a′}
{b, ã′} −{b, b̃′} {ã, ã′} −{ã, b̃′}

−{b, b′} {b, a′} −{ã, b′} {ã, a′}


 (42)

is equal to the matrix f0�0 + f3�3, for example,

{a, b′} = 1

2
λλ′

{
λλ′ − ρ2

κκ ′
λ + λ′

λ − λ′ + i0
+

λλ′ + ρ2

κκ ′
λ − λ′

λ + λ′ + i0

}
ab′ (43)

and

{ã, b′} = −1

2
λλ′

{
λλ′ − ρ2

κκ ′
λ + λ′

λ − λ′ − i0
+

λλ′ + ρ2

κκ ′
λ − λ′

λ + λ′ − i0

}
ab′. (44)

As ζ is pure imaginary, i.e. ζ = iη, noting that δ(iη) = δ(η), we also have the same results
with (43) and (44).
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7. Action-angle variables in a continuous spectrum

From the inverse scattering transform, a(ζ ) and ã(ζ ) are independent of t, and b(ζ ) and b̃(ζ )

depend on t. And noting the reduction transformation properties (15) and (18), we may restrict
ourselves to consider ζ , ζ ′ > ρ. Thus, from (43) and (44), there is

{|a(ζ )|2, b(ζ ′)} = −i2λ3π |a(ζ )|2b(ζ )(1 − ρ2ζ−2)−1δ(ζ − ζ ′). (45)

The angle variable Q(ζ) and action variable P(ζ ) are chosen, respectively, to be

Q(ζ) = arg b(ζ ) = 1

2i
ln

b(ζ )

b̃(ζ )
, P (ζ ) = F(|a(ζ )|2), (46)

such that

{P(ζ ),Q(ζ ′)} = −δ(ζ − ζ ′), (47)

where the unknown function F is to be determined by (45).
Substituting (45) into (47), it is easy to find

F ′(|a(ζ )|2)2λ3π |a(ζ )|2(1 − ρ2ζ−2)−1 = 1. (48)

Thus, the action variable P(ζ ) is chosen as

P(ζ ) = F(|a(ζ )|2) = 1 − ρ2ζ−2

2λ3π
ln|a(ζ )|2. (49)

8. Action-angle variable in a discrete spectrum

From the inverse scattering transform we know that λn, zero of a(λ), is independent of time
and bn is dependent on time periodically. Hence, we need the Poisson bracket of ζm with bn,
and of them with a(ζ ) and b(ζ ). From (19) and (45), we obtain

{ln ǎ(ζ ), b(ζ ′)} +
∑
m

( {ζ̄m, b(ζ ′)}
ζ − ζ̄m

− {ζm, b(ζ ′)}
ζ − ζm

)

= b(ζ ′)
{
λλ′ λ + λ′

2

λλ′ − ρ2

κκ ′
1

λ − λ′ + i0
+ λλ′ λ − λ′

2

λλ′ + ρ2

κκ ′
1

λ + λ′ + i0

}
.

(50)

If ζ = ζm, then λm = Re ζm is real, λm − λ′ + i0 �= 0 and λm + λ′ + i0 �= 0 since λ′ is real.
The right-hand side indicates that λm is not a pole, that is, {ζm, b(ζ ′)} = 0. Similarly, we have
{ζ̄m, b(ζ ′)} = 0. Then by the standard procedure, similar to (50), we have

{ln ǎ(ζ ), bn} +
∑
m

( {ζ̄m, bn}
ζ − ζ̄m

− {ζm, bn}
ζ − ζm

)

= bn

{
λλn

λ + λn

2

λλn − ρ2

κκn

1

λ − λn

+ λλn

λ − λn

2

λλn + ρ2

κκn

1

λ + λn

}
. (51)

The right-hand side has a pole at ζ = ζn; noting that λ − λn = 1
2 (ζ − ζn)

(
1 − ρ2ζ−1ζ−1

n

)
, we

obtain

{ζm, bn} = −2λ3
n

(
1 − ρ2ζ 2

n

)−1
bnδmn. (52)

This result is similar to that of the Hamiltonian theory for other nonlinear equations. As
ζ̄n �= ρ2ζ−1

n for the DNLS+ equation, it is important that ζ − ζ̄n is not a factor of λ − λn,
that is

{ζ̄m, bn} = 0. (53)

Furthermore, we also have {a(ζ ), ζm} = 0 and {ζn, ζm} = 0.
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In the discrete spectrum case, the angle variable is

Qn = ln bn (54)

and the action variable is assumed to be Pm = G(ζm), where G is an unknown function. Their
Poisson bracket must be {Pm,Qn} = −δmn, and then, noting (52) and (54), we have

G′(ζm)2λ3
m

(
1 − ρ2ζ−2

m

)−1 = 1. (55)

We thus obtain

Pm = G(ζm) = − 1

2λ2
m

. (56)

9. Conservative quantities

Since the first one of the Lax pair of the DNLS+ equation is the same as that of the NLS+

equation, the conservative quantities are the same. We have

ln a(ζ ) =
∑

n

ln

(
ζ − ζn

ζ − ζ̄n

ζ̄n

ζn

)
− ζ

i2π

∫
�

dζ ′ ln|a(ζ ′)|2
(ζ ′ − ζ )ζ ′ . (57)

Since a(ζ ) is a constant in time, all terms in the expansion of |ζ | → ∞ are constant, for
example,

I0 =
∑

n

2 ln
ζ̄n

ζn

+
1

iπ

∫
�+

dζ ′ 1

ζ ′ ln|a(ζ ′)|2, (58)

I2 =
∑
m

(
ζ̄ 2
m − ζ 2

m

)
+

1

iπ

∫
�+

dζ ′ζ ′ ln|a(ζ ′)|2, (59)

etc, where we have taken account of |a(ζ )|2 = |a(−ζ )|2 and the condition that −ζm is a zero
of a(ζ ) as long as ζm is a zero of a(ζ ), see (19). The Hamiltonian is assumed to be

H = iI2 − iηI0 =
∑
m

i
[(

ζ̄ 2
m − ζ 2

m

) − 2η(ln ζ̄m − ln ζn)
]

+
1

π

∫
�+

dζ ′
(

ζ ′ − η
1

ζ ′

)
ln|a(ζ ′)|2,

(60)

where the contour �+ is along the first quadrant, and η is a real constant we shall determine.
The integral domain (0, ρ) can be transformed to (ρ,∞) by ζ ′ → ρ2ζ ′−1; the integral part is
now given by

Hint = 1

iπ

∫
�+∪{|ζ ′|>ρ}

dζ ′{(ζ ′ + ρ4ζ ′−3
) − 2ηζ ′−1} ln|a(ζ ′)|2. (61)

From (45), Hint must involve a factor (1 − ρ2ζ ′−2
); it is easily seen that if and only if η = ρ2,

the factor in bracket can be factored as

(ζ ′ + ρ4ζ ′−3
) − 2ηζ ′−1 = (ζ ′ − ρ2ζ ′−1

)(1 − ρ2ζ ′−2
). (62)

In this choice, we obtain from (45)

{Hint, b(ζ )} = −i4λ3κb(ζ ). (63)

From equations (52) and (53), we have

{Hdis, bn} = −i4λ3
nκnbn, (64)
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where Hdis is the summation part. From equations (63) and (64), there are

b(t, ζ ) = b(0, ζ ) ei4λ3κt , bn(t) = bn(0) ei4λ3
nκnt . (65)

In such a choice, the second one of the Lax pair should be

M = −i2λ4σ3 + 2λ3U − iλ2(U 2 − ρ2)σ3 + λU(U 2 − ρ2) − iλUxσ3, (66)

which is different from the usual form. As a result, the compatibility condition gives

iut − uxx + i[(|u|2 − ρ2)u]x = 0, (67)

which differs from the usual form of the DNLS+ equation (1) by a Galileo transformation

t ′ = t, x ′ = x − ρ2t. (68)

Correspondingly, different from equation (5), here the Hamiltonian density is chosen as

H(x) = 1
2 (|u|2 − ρ2)2 − iuxū. (69)

Thus, we formulate the complete Hamiltonian theory for the DNLS equation with
nonvanishing boundary conditions. At the end, the linear Galileo transformation is introduced
to take the time dependence of angle variables derived from its Poisson bracket with the
Hamiltonian compatible with that derived from the second Lax equation.

As u represents the complex transverse magnetic field, the DNLS equation with
nonvanishing boundary conditions describes magnetohydrodynamic waves in plasma
propagating in an arbitrary angle to the ambient magnetic field, while the vanishing boundary
conditions can only deal with waves exactly parallel to the ambient field [4, 5, 13–16]. In the
case of a vanishing boundary, the DNLS equation was solved by the inverse scattering transform
(IST) [6], or other approaches [7–9]. However, the DNLS equation with a nonvanishing
boundary has never been solved exactly though some works have tried to do it [9, 11–14, 17].
Being one of a few well-known unsolved completely integrable nonlinear evolution equations,
it is worth trying our best to find the final solution for the DNLS+ equation. The success of
formulating the Hamiltonian theory should be greatly beneficial to the procedure of solving
the DNLS equation.
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